Follow us :

Part Ways with Grooving and Parting Problems

time2017/06/29

Tooling that forms chips that are easily removed from the workpiece and flexible, modular coolant delivery systems help manufacturers get the most productivity during their parting and grooving processes.

Tooling that forms chips that are easily removed from the workpiece and flexible, modular coolant delivery systems help manufacturers get the most productivity during their parting and grooving processes.


Grooving and parting-off applications present unique challenges. Unlike a longitudinal turning application that allows chips to move in three directions without restrictions, during grooving and parting-off processes you are machining between flanks, which confine chip movement to just two directions.

Consider two key points to avoid problems. One is chip forming and the other is chip control. Good chip forming ensures that the material is plastically deformed by the tooling so the chips are narrower than the width of the cutting insert to avoid damage to the groove flanks. An example is a 5-mm-wide groove insert that creates a chip that is 4.85 mm wide.

Chip control ensures that chips will not cause problems during the machining process. The goal is to produce short helical, spiral, comma, or tear chips (shaped like 6s and 9s). These types of chips are more likely to provide stability in the grooving and parting-off process.

COOLANT IS KEY

Cooling lubricants and cutting fluids can dramatically affect the reliability of grooving and parting-off processes. When applied correctly, cooling lubricants can reduce the temperature of the material being machined and improve chip removal. Keep in mind that no matter how much coolant is poured on an application, or how effective the coolant is, it will have little to no effect if it is not applied to the cutting edge.

Coolant can be supplied by an external or internal means. When external coolant is supplied via nozzles spraying on the toolholders, only a small amount of the coolant actually gets to the cutting edge so it has less of an effect on the cutting application than coolant delivered using a through-coolant toolholder delivery system. This is especially true when machining deep grooves and working with materials that are easily work-hardened, such as superalloys and stainless steels.

When internal coolant is supplied directly through the toolholder, it is directed precisely to the cutting edge, enabling a much more reliable process. Internal coolant, or through-coolant, holders are available in many variations. Some direct the coolant to immediately above the insert, some to immediately below.

Coolant from above can greatly improve chip control, which is a key to longer tool life. It can also reduce built-up edges .

Coolant supplied below the cutting edge will reduce the cutting zone temperature while minimizing flank wear. This also aids in chip removal. Reducing the temperature makes it possible to use tougher varieties of inserts while maintaining tool life and cutting parameters or, in some cases, increasing tool life and improving process reliability. This process also delivers the best results when engagement times are long and temperature is a limiting factor.

Through-coolant holders eliminate the need to adjust coolant lines and always direct the coolant to the tool’s cutting edge. External coolant lines can be bumped out of alignment while operators are changing tools or loading parts, which can cause process variation or premature tool failure.